
Contextual category of a finitary monad

Vladimir Voevodsky1,2

July 2014

Examples:

1. If M = Id i.e. M(X) = X the M − cor = FSets is the category of finite sets. It is easy
to see that the category of finite sets is the free category with finite coproducts generated
by one object. Therefore, (FSets)op can be thought of the free category with finite products
generated by one object.

2. Let M be given by M(X) = X q A where A is a set. This corresponds to the system of
expressions where all expressions are either variables or constants and the set of constants
is A. The category (M − cor)op can be though of as the free category with finite products
generated by an object U and the set A of morphisms pt→ U .

1 Systems of expressions

Note: [?], [?].

Free systems of expressions. Let M be a set and let T (M) be the set of finite rooted trees
whose vertices (including the root) are labeled by elements of M and such that for any vertex the
set of edges leaving this vertex is ordered. Note that such ordered trees have no symmetries. We
will use the following notations. For T ∈ T (M) let V rtx(T ) be the set of vertices of T and for
v ∈ V rtx(T ) let lbl(v) = lbl(v)T ∈ M be the label on v. We will sometimes write v ∈ T instead
of v ∈ V rtx(T ). For v ∈ V rtx(T ) let [v] = [v]T ∈ T (M) be the subtree in T which consists of
v and all the vertices under v. Let val(v) be the valency of v i.e. the number of edges leaving v
and ch1(v), . . . , chval(v)(v) ∈ V rtx(T ) be the ”children” of v i.e. the end points of these edges. Let
further bri(v) = [chi(v)] be the branches of [v]. We write v ≤ w (resp. v < w) if v ∈ [w] (resp.
v ∈ [w]− w). We say that two vertices v and w are independent if v /∈ [w] and w /∈ [v].

For three sets A,B and Cont let

AllExp(A,B;Con) = T (AqB q (Con× (qn≥0B
n)))

Elements of AllExp(A,B;Con) are called expressions over the alphabet Con (or with a set of
constructors Con), free variables from A and bound variables from B.

An expression is called unambiguous if it satisfies the following conditions:

1. if lbl(v) ∈ AqB then val(v) = 0,

2. (a) if v < v′, lbl(v) = (c;x1, . . . , xn) and lbl(v′) = (c′;x′1, . . . , x
′
n′) then

{x1, . . . , xn} ∩ {x′1, . . . , x′n′} = ∅,
1School of Mathematics, Institute for Advanced Study, Princeton NJ, USA. e-mail: vladimir@ias.edu
2Work on this paper was supported by NSF grant 1100938.

1



(b) if lbl(v) = (c;x1, . . . , xn) then xi 6= xj for i 6= j,

3. if lbl(v) = (c;x1, . . . , xn) and lbl(v′) ∈ {x1, . . . , xn} then v′ ∈ [v].

The first conditions says that a vertex labeled by a variable is a leaf. The second one is equivalent
to saying that if the same variable is bound at two different vertices v, v′ then these vertices are
independent i.e. [v] ∩ [v′] = ∅ and that a vertex can not bind the same variable twice. The third
one says that all the leaves labeled by a bound variable lie under the vertex where it is boud. We
let UAExp(A,B;Con) denote the subset of unambiguous expressions in AllExp(A,B;Con). Note
that for for any T ∈ UAExp(A,B;Con) and v ∈ V rtx(T ) there is a subset Ext(v) ⊂ B such that

[v] ∈ UAExp(Aq Ext(v), B\Ext(v);Con)

Any triple of maps fCon : A→ A′, fB : B → B′, fCon : Con→ Con′ define a map

f∗ = (fA, fB, fCon)∗ : AllExp(A,B;Con)→ AllExp(A′, B′;Con′)

which changes labels in the obvious way. If fB is injective then f∗ maps unambiguous expressions
to unambiguous ones.

An element T of UAExp(A,B;Con) is said to be strictly unambiguous if for any v 6= v′ in
V rtx(T ) such that lbl(v) = (c;x1, . . . , xn) and lbl(v′) = (c′;x′1, . . . , x

′
n′) one has {x1, , . . . , xn} ∩

{x′1, . . . , x′n′} = ∅ i.e. if the names of all bound variables are different. We let SUAExp(A,B;Con)
denote the subset of strictly unambiguous expressions in UAExp(A,B;Con).

An element T of UAExp(A,B;Con) is said to be α-equivalent to an element T ′ of UAExp(A,B′;Con)
if there is a set B′′ , an element T ′′ ∈ UAExp(A,B′′;Con) and two maps f : B′′ → B, f ′ : B′′ → B′

such that T = (Id, f, Id)∗(T
′′) and T ′ = (Id, f ′, Id)∗(T

′′). The following lemma is straightforward:

Lemma 1.1 [2009.09.08.l1] For any two sets A and Con one has:

1. α-equivalence is an equivalence relation,

2. for any set B and any element T ∈ UAExp(A,B;Con) there exists an element
T ′ ∈ UAExp(A,N;Con) such that T

α∼ T ′ and T ′ is strictly unambiguous,

3. fwo strictly unambiguous elements T, T ′ ∈ UAExp(A,B;Con) are α-equivalent if and only if
there exists a permutation f : B → B such that (Id, f, Id)∗(T ) = T ′ (cf. swapping).

We let Expα(A;Con) denote the set of α-equivalence classes in qBUAExp(A,B;Con). In view
of Lemma 1.1 this set is well defined and can be also defined as the set of equivalence classes in
SUAExp(A,N;Con) modulo the equivalence relation generated by the permutations on N.

Note that for two α-equivalent expressions T1, T2 and a vertex v ∈ V (T1) = V (T2) the expressions
[v]T1 and [v]T2 need not be α-equivalent since some of the variables which are bound in T1 may be
free in [v].

The maps (fA, fB, fCon)∗ respect α-equivalence. Therefore for any fA : A→ A′ and fCon : Con→
Con′ there is a well defined map

(fA, fCon)∗ : Expα(A;Con)→ Exp(A′;Con′)

2



which make Expα(−;−) into a covariant functors from pairs of sets to sets. In addition there is
a well defined notion of substitution on Expα(−;Con) which may be considered as a collection of
maps of the form:

Expα(A;Con)× (
∏
a∈A

Expα(Xa;Con))→ Expα(qa∈AXa;Con)

given for all pairs (A; {Xa}a∈A) where A is a set and {Xa}a∈A a family of sets parametrized by A.
Alternatively, the substitution structure can be seen as a collection of maps

Expα(Expα(A;Con);Con)→ Expα(A;Con)

given for all A and Con. These maps make the functor Expα(−;Con) into a monad (triple) on the
category of sets which functorially depends on the set Con.

Example 1.2 [lambda] The mapping which sends a set X to the set of α-equivalence classes
of terms of the untyped λ-calculus with free variables from X is a sub-triple of Expα(−;Con)
where Con = {λ, ev}. Elements T of UAExp(X,N; {λ, ev}) which belong to this sub-triple are
characterized by the following ”local” conditions:

1. for each v ∈ T , lbl(v) ∈ X qNq {ev} q {λ} ×N

2. if lbl(v) ∈ {λ} ×N then val(v) = 1

3. if lbl(v) = ev then val(v) = 2.

Example 1.3 [propositional]The mapping which sends a set X to the set of terms of the propo-
sitional calculus with free variables from X is a sub-triple of Expα(−;C0) where C0 = {∨,∧, q,⇒}.
Elements T of UAExp(X,N;C0) which belong to this sub-triple are characterized by the following
”local” conditions:

1. for all v ∈ T , lbl(v) ∈ X q C0

2. if lbl(v) ∈ {∨,∧,⇒} then val(v) = 2

3. if lbl(v) =q then val(v) = 1.

Example 1.4 [multisorted] Consider first order logic with several sorts GS = {S1, . . . , Sn}. Let
GP be the set of generating predicates and GF the set of generating functions. Let C1 = C0q{∀, ∃}
and C2 = C1qGPqGFqGS. We can identify the α-equivalence classes of formulas of the first order
language defined by GS and GF with free variables from a set X with a subset in Expα(X,N;C2).
Vertices which are labeled by (∀;x) and (∃;x) have valency two. For such a vertex v, the first branch
of [v] is one vertex labeled by an element of GS giving the sort over which the quantification occurs
and the second branch is the expression which is quantified. Now however, these subsets do not
form a sub-triple of Expα since not all substitutions are allowed. By allowing all substitutions
irrespectively of the sort we get (for each X) a subset in Expα(X;C2) whose elements will be called
pseudo-formulas.

The following operations on expressions are well defined up to the α-equivalence:

3



1. If T1, . . . , Tm ∈ Expα(A;Con), a1, . . . , an are pair-wise different elements of A and M ∈
Con we will write (M,a1, . . . , an)(T1, . . . , Tm) for the expression whose root v is labeled by
(M,a1, . . . , an), val(v) = n and bri(v) = Ti.

2. For T1, T2 ∈ Expα(A;Con) and v ∈ T1 we let T1(T2/[v]) be the expression obtained by
replacing [v] in T1 with T ′2 where T ′2 is obtained from T2 by the change of bound variables
such that the bound variables of T ′2 do not conflict with the variables of T1.

3. For T,R1, . . . , Rn ∈ Expα(A;Con) and y1, . . . , yn ∈ A we let T (R1/y1, . . . , Rn/yn) denote the
expression obtained by changing Ri’s by α-equivalent R′i such that bnd(R′i) ∩ bnd(Rj)

′ = ∅
for i 6= j, changing T to an α-equivalent T ′ such that bnd(T ′)∩ (var(R′1)∪ . . .∪ var(R′n)) = ∅
and then replacing all the leaves of T ′ marked by yi by R′i.

In all the examples considered above, these operations correspond to the usual operations on
formulas. The first operation can be used to directly associate expressions in our sense with the
formulas. For example, the expression associated with the formula ∀x : S.P (x, y) in a multi-sorted
predicate calculus is (∀, x)(S, P (x, y)) where as was mentioned above we use the same notation for
an element of AqB q (Con× (qn≥0B

n)) and the one vertex tree with the corresponding label.

Note: about representing elements of AllExp(A,B;Con) by linear sequences of elements of A q
Bq??.

Reduction structures. Another component of the structure present in systems of expressions
used in formal systems is the reduction relation. It is very important for our approach to type
systems that the reduction relation is defined on all pseudo-formulas and is compatible with the
substitution structure even when not all psedu-formulas are well formed formulas. In what follows
we will consider, instead of a particular syntactic system, a pair (S, .) where S is a continuous
triple on the category of sets and . is a reduction structure on S i.e. a collection of relations .X
on S(X) given for all finite sets X satisfying the following two conditions:

1. if E ∈ S({x1, . . . , xn}), f1, . . . , fn, f
′
i ∈ S({y1, . . . , ym}) and fi .{y1,...,ym} f

′
i then

E(f1/x1, . . . , fi/xi, . . . fn/xn) .{x1,...,xn} E(f1/x1, . . . , f
′
i/xi, . . . fn/xn),

2. if E,E′ ∈ S({x1, . . . , xn}), f1, . . . , fn ∈ S({y1, . . . , ym}) and E .{x1,...,xn} E
′ then

E(f1/x1, . . . , fn/xn) .{x1,...,xn} E
′(f1/x1, . . . , fn/xn).

The following two results are obvious but important.

Proposition 1.5 [2009.10.17.prop1] Let S be a continuous triple on Sets and .α be a family of
reduction structures on S. Then the intersection ∩α.α : X 7→ ∩α.α,X is a reduction structure on
S.

Corollary 1.6 [2009.10.17.cor1] For any family (Xα, preα) of pairs of the form (X, pre) where
X is a set and pre is a relation on S(X) (i.e. a subset of S(X)× S(X)) there exists the smallest
reduction structure . = .(Xα, preα) on S such that for each α and each (f, g) ∈ preα one has f . g.

4



2 C-systems defined by a triple.

Let S be a continuous triple on Sets. Let S−cor be the full subcategory of the Kleisli category of S
whose objects are finite sets. Recall, that the set of morphisms from X to Y in S− cor is the set of
maps from X to S(Y ) i.e. S(Y )X (in other words, S− cor is the category of free, finitely generated
S-algebras). We will construct two C-systems C(S) and CC(S)which are based on (S − cor)op.

Examples:

1. If S = Id i.e. S(X) = X the S − cor = FSets is the category of finite sets. It is easy to
see that the category of finite sets is the free category with finite coproducts generated by
one object. Therefore, (FSets)op can be thought of the free category with finite products
generated by one object.

2. Let S be given by S(X) = X q A where A is a set. This corresponds to the system of
expressions where all expressions are either variables or constants and the set of constants
is A. The category (S − cor)op can be though of as the free category with finite products
generated by an object U and the set A of morphisms pt→ U .

The categories of sets, finite sets or even the category of finite linearly ordered sets and their
isomorphisms are all level 1 categories and so is the category S− cor. We can get a set-level model
C(S) for (S − cor)op by setting Ob(C(S)) = N and HomC(S)(n,m) = S({1, . . . , n})m.

The category C(S) extends to a C-system which is defined as follows. The final object is 0. The
map ft is given by

ft(n) =

{
0 if n = 0
n− 1 if n > 0

The canonical projection n→ n− 1 is given by the sequence (1, . . . , n− 1). For f = (f1, . . . , fm) :
n→ m the canonical square build on f and the canonical projection m+ 1→ m is of the form

n+ 1
(f1,...,fm,n+1)−−−−−−−−−→ m+ 1y y

n
(f1,...,fm)−−−−−−→ m

Any morphism of triples S → S′ defines a C-system morphism C(S) → C(S′). Non-trivial C-
subsystems of C(S) are in one-to-one correspondence with continuous sub-triples of S.

Note: add notes that a continuous sub-triple of S is exactly the same as a subcategory in S −
cor which contains all (isomorphism classes of) objects. Intersection of two sub-triples is a sub-
triple which allows us to speak of sub-triples (systems of expressions etc.) generated by a set of
expressions. For the construction of type systems the category S− cor is replaced by the C-system
CC(S,X).

Note: that continuous triples on Sets are the same as category structures on N which extend the
a category structure of finite sets and where the addition remains to be coproduct.

Let now CC(S) be the set-level category whose set of objects is Ob(CC(S)) = qn≥0Obn where

Obn = S(∅)× . . .× S({1, . . . , n− 1})

5



and the set of morphisms is

mor(CC(S)) =
∐

n,m≥0

Obn ×Obm × S({1, . . . , n})m

with the obvious domain and codomain maps. The composition of morphisms is defined in the
same way as in C(S) such that the mapping Ob(CC(S)) → N which sends all elements of Obn
to n, is a functor. The associativity of compositions follows immediately from the associativity of
compositions in S − cor.

Note that if S(∅) = ∅ then CC(S) = ∅ and otherwise the functor CC(S) → (S − cor)op is an
equivalence, so that in the second case C(S) and CC(S) are indistinguishable as level 1 categories.
However, as set level categories they are quite different.

The category CC(S) is given a C-system as follows. The final object is the only element of Ob0,
the map ft is defined by the rule

ft(T1, . . . , Tn) = (T1, . . . , Tn−1).

The canonical pull-back square defined by an object (T1, . . . , Tm+1) and a morphism (f1, . . . , fm) ∈
S({1, . . . , n})m from (R1, . . . , Rn) to (T1, . . . , Tm) is of the form

[2009.11.05.oldeq1]

(R1, . . . , Rn, Tm+1(f1/1, . . . , fm/m))
(f1,...,fm,n+1)−−−−−−−−−→ (T1, . . . , Tm+1)y y

(R1, . . . , Rn)
(f1,...,fm)−−−−−−→ (T1, . . . , Tm)

(1)

Proposition 2.1 [2009.10.01.prop2] With the maps defined above CC(S) is a C-system.

Proof: Straightforward.

Note that the natural projection CC(S) → C(S) is a C-system morphism. It’s C-system sections
are in one-to-one correspondence with S(∅) such that U ∈ S(∅) corresponds to the section which
takes the object n of C(S) to the object (U, . . . , U) of CC(S).

Any morphism of triples S → S′ defines a C-system morphism CC(S) → CC(S′). C-subsystems
of CC(S), which are discussed in more detail below, provide an important class of type systems
over S.

There is another construction of a category from a continuous triple S which takes as an additional
parameter a set V ar which is called the set of variables. Let Fn(V ar) be the set of sequences of
length n of pair-wise distinct elements of V ar. Define the category CC(S, V ar) as follows. The set
of objects of CC(S, V ar) is

Ob(CC(S, V ar)) = qn≥0 q(x1,...,xn)∈Fn(V ar) S(∅)× . . .× S({x1, . . . , xn−1})

For notational compatibility with the traditional type theory we will write the elements ofOb(CC(S,X))
as sequences of the form x1 : E1, . . . , xn : En. The set of morphisms is given by

HomCC(S,,V ar)((x1 : E1, . . . , xn : En), (y1 : T1, . . . , ym : Tm)) = S({x1, . . . , xn})m

6



The composition is defined in such a way that the projection

(x1 : E1, . . . , xn : En) 7→ (E1, E2(1/x1), . . . , En(1/x1, . . . , n− 1/xn−1))

is a functor from CC(S,X) to CC(S). This functor is clearly an equivalence. There is an obvious
final object and ft map on CC(S,X). There is however a real problem in making it into a C-system
which is due to the following. Consider an object (y1 : T1, . . . , ym+1 : Tm+1) and a morphism
(f1, . . . , fm) : (x1 : R1, . . . , xn : Rn)→ (y1 : T1, . . . , ym : Tm). In order for the functor to CC(S) to
be a C-system morphism the canonical square build on this pair should have the form

(x1 : R1, . . . , xn : Rn, xn+1 : Tm+1(f1/1, . . . , fm/m))
(f1,...,fm,n+1)−−−−−−−−−→ (y1 : T1, . . . , ym+1 : Tm+1)y y

(x1 : R1, . . . , xn : Rn)
(f1,...,fm)−−−−−−→ (y1 : T1, . . . , ym : Tm)

where xn+1 is an element of X which is distinct from each of the elements x1, . . . , xn. Moreover,
we should choose xn+1 in such a way the the resulting construction satisfies the C-system axioms
for (f1, . . . , fm) = Id and for the compositions (g1, . . . , gn) ◦ (f1, . . . , fm). One can easily see that
no such choice is possible for a finite set X. At the moment it is not clear to me whether or not
such it is possible for an infinite X.

3 C-subsystems of CC(S).

Let TS be a C-subsystem of CC(S). By Lemma ??, TS is determined by the subsets B = Ob(TS)

and B̃ = Õb(TS) in Ob(CC(S)) and Õb(CC(S)). By definition we have

Ob(CC(S)) =
∐
n≥0

n−1∏
i=0

S({1, . . . , i})

An element of Õb(CC(S)) is given by a pair (Γ, s) where Γ ∈ Ob(CC(S)) is an object and s :
ft(Γ) → Γ is a section of the canonical morphism pΓ : Γ → ft(Γ). It follows immediately from
the definition of CC(S) that for Γ = (E1, . . . , En+1), a morphism (f1, . . . , fn+1) ∈ S({1, . . . , n})n+1

from ft(Γ) to Γ is a section of pΓ if an only if fi = i for i = 1, . . . , n. Therefore, any such
section is determined by its last component fn+1 and mapping ((E1, . . . , En+1), (f1, . . . , fn+1)) to
(E1, . . . , En, En+1, fn+1) we get a bijection

[2009.10.15.eq2]Õb(CC(S)) ∼=
∐
n≥0

(

n−1∏
i=0

S({1, . . . , i}))× S({1, . . . , n})2 (2)

For Γ = (E1, . . . , En) we write (ΓBTS) if (E1, . . . , En) is in B and (Γ `TS t : T ) if (E1, . . . , En, T, t)
is in B̃. When no confusion is possible we will write ` instead of `TS . We also write l(Γ) = n and
ft(Γ) = (E1, . . . , En−1).

The following result is an immediate corollary of Proposition ??.

Proposition 3.1 [2009.10.16.prop3] Let S be a continuous triple on Sets. A pair of subsets

B ⊂
∐
n≥0

n−1∏
i=0

S({1, . . . , i})

7



B̃ ⊂
∐
n≥0

(

n−1∏
i=0

S({1, . . . , i}))× S({1, . . . , n})2

defines a C-subsystem of CC(S) if and only if the following conditions hold:

1. (B)

2. (ΓB)⇒ (ft(Γ)B)

3. (Γ ` t : T )⇒ (Γ, TB)

4. (Γ1,Γ2,` o : S) ∧ (Γ1, TB)⇒ (Γ1, T, si+1Γ′ ` si+1o : si+1S) where i = l(Γ1)

5. (Γ1, T,Γ2 ` o : S) ∧ (Γ1 ` r : T )⇒ (Γ1, di+1(Γ2[r/i+ 1]) ` di+1(t[r/i+ 1]) : di+1(T [r/i+ 1]))
where i = l(Γ1)

6. (Γ, TB)⇒ (Γ, T ` n+ 1 : T ) where n = l(Γ).

where for E ∈ S({1, . . . , k}), siE = E[i + 1/i, . . . , k + 1/k] ∈ S({1, . . . , k + 1} and diE = E[i/i +
1, . . . , k − 1/k] ∈ S({1, . . . , k − 1}

Note that conditions (4) and (5) together with condition (6) and condition (3) imply the following

4a (Γ1,Γ2B) ∧ (Γ1, TB)⇒ (Γ1, T, si+1Γ2B) where i = l(Γ1)

5a (Γ1, T,Γ2B) ∧ (Γ1 ` r : T )⇒ (Γ1, di+1(Γ2[r/i+ 1])B) where i = l(Γ1).

Note also that modulo condition (2), condition (1) is equivalent to the condition that B 6= ∅.

Remark 3.2 [2010.08.07.rem1] If one re-writes the conditions of Proposition 3.1 in the more
familiar in type theory form where the variables introduced in the context are named rather than
directly numbered one arrives at the following rules:

B
x1 : E1, . . . , xn : EnB

x1 : E1, . . . , xn−1 : En−1 `
x1 : E1, . . . , xn : En B t : T

x1 : E1, . . . , xn : En `

x1 : E1, . . . , xn : En ` t : T x1 : E1, . . . , xi : Ei, y : FB
x1 : E1, . . . , xi : Ei, y : F, xi+1 : Ei+1, . . . , xn : En ` t : T

, i = 0, . . . , n

x1 : E1, . . . , xn : En ` t : T x1 : E1, . . . , xi : Ei ` r : Ei+1

x1 : E1, . . . , xi : Ei, xi+2 : Ei+2[r/xi+1], . . . , xn : En[r/xi+1] ` t[r/xi+1] : T [r/xi+1]
, i = 0, . . . , n−1

x1 : E1, . . . , xn : EnB
x1 : E1, . . . , xn : En ` xn : En

8



which are similar to (and probably equivalent) the ”basic rules of DTT” given in [?, p.585]. The
advantage of the rules given here is that they are precisely the ones which are necessary and
sufficient for a given collection of contexts and judgements to define a C-system.

Lemma 3.3 [2009.11.05.l1] Let S, B, B̃ be as above and let (E1, . . . , En), (T1, . . . , Tm) ∈ B and
(f1, . . . , fm) ∈ S({1, . . . , n})m. Then

(f1, . . . , fm) ∈ HomTS((E1, . . . , En), (T1, . . . , Tm))

if and only if (f1, . . . , fm−1) ∈ HomTS((E1, . . . , En), (T1, . . . , Tm−1)) and

(E1, . . . , En, Tm(f1/1, . . . , fm−1/m− 1), fm) ∈ B̃

Proof: Straightforward using the fact that the canonical pull-back squares in CC(S) are given by
(1).

9


